
Hybrid Willow – Does it Pay?

Van Lantz, Professor, Faculty of Forestry and Environmental Management University of New Brunswick vlantz@unb.ca

Agriculture et Agroalimentaire Canada

1. Introduction

- There has been increasing interest in using short-rotation woody crops (SRWC) as a source of biomass energy in Canada
- This interest has largely emerged from growing concerns over:
 - Energy security
 - Volatility of fossil fuel prices
 - Global CO₂ emissions
 - Need to revitalize rural economies
- **Hybrid willow** is one SRWC that has been identified as having outstanding potential to serve as a dedicated feedstock for the production of renewable energy and other products
 - It can provide a long-term, sustainable, carbon neutral replacement for fossil fuels, promote rural development & environmental co-benefits (water/wildlife)

Hybrid Willow Trials:

- Many hybrid willow experiments have been conducted in Canada over the past 30 years, most recently through the Canadian Biomass Innovation Network and the ecoENERGY Technology Initiative.
 - The focus of the experiments have been on examining growth & yield performance, and quantifying carbon and associated environmental cobenefits.
- In PEI, a number of landowners have been participating in a recent SRWC program called the Bioeconomy Crop Initiative.
 - Offered by the PEI Dept. of Agriculture through the Agricultural Flexibility Fund, a cost-sharing agreement between the Government of Canada and the Province.

Hybrid Willow Economics:

- The economics of hybrid willow crops has been studied in many regions of the world including Europe, the United States, and Canada.
 - Study findings often tend to support willow production as a competitive source of energy compared to other fossil fuels.
- Examples:
 - Buchholz and Volk (2011) examined benefits/costs of producing willow biomass for <u>off-farm</u> energy-use (10 hectare, 3-year rotation, 22-year horizon), upstate NY.
 - Findings: internal rate of return (IRR) = 5.5%.
 - McKenney et al. (2011) examined benefits/costs of producing willow biomass for <u>on-farm</u> greenhouse heat source (144-1430 ha, 3-year rotation, 20-year horizon), ONT.
 - Findings: IRR for displacing heating oil = 11% to 14%.
 - Findings: IRR for displacing natural gas = -1% to 4%.

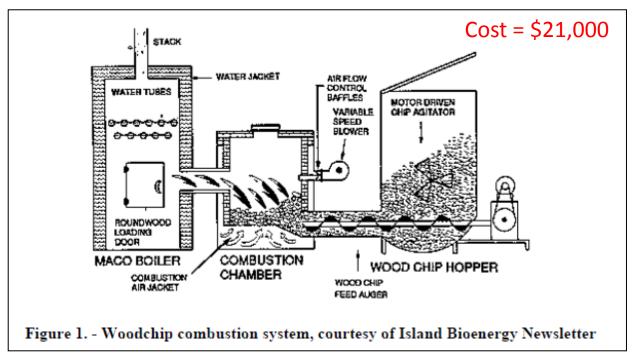
The Issue:

- What is the relative economic attractiveness of producing hybrid willow crops on traditional farms (i.e., crop and livestock producers) for use as an <u>on-farm</u> vs. <u>off-farm</u> energy source?
 - To-date there has been no systematic comparison of these investment opportunities.
 - Need to conduct this analysis in the context of planting the crop on different types of land:
 - Marginal (high-sloped)
 - Productive (in-field)
 - Environmentally sensitive (non-legislated riparian)
 - Such analysis would shed light on possible opportunities for traditional farms to play a role in:
 - Revitalizing rural economies
 - Increasing energy security / Reducing reliance on fossil fuel prices
 - Contributing to global CO₂ emission reductions.

Study Objective:

- The purpose of this study was to conduct a financial benefit-cost analysis (BCA) of producing hybrid willow biomass on riparian, in-field, and high-sloped agricultural land in PEI for use as <u>on-farm</u> or <u>off-farm</u> renewable energy source.
 - Ancillary research questions to be explored include:
 - (i) Under what conditions is hybrid willow production a feasible source of renewable energy for an average size farm on PEI?
 - (ii) Can the use of fertilizer be justified on economic grounds?
 - (iii) What would be the acreage requirement be to heat typical farm buildings on PEI?

2. Methods and Data


- Benefit-cost analysis included comparison of benefits & costs for a hybrid willow cropping system in PEI for <u>on-farm</u> and <u>off-farm</u> uses considering:
 - Project sizes of 3, 6, and 9 hectares
 - Yields on riparian, in-field, and high-sloped land (with/without fertilizer)

(a) <u>Off-farm</u> Use Scenario:

- Plant willow over the entire project size in the initial year
- Harvest and chip in year 4, and transport/sell chips in year 5 to PEI Energy Systems in Charlottetown.
- Subsequent harvests/transport/sales occurred every 3 years thereafter, for 7 rotations, followed by stump removal (a 23-year project).

(b) <u>On-farm</u> Use Scenario:

- Plant willow over 1/3 of the entire project size annually for the first 3 years
- Harvest and chip annually 1/3 of project size starting in year 4, and for use in a <u>biomas boiler</u> that would offset heating oil and other costs on the farm.
- Continue annual harvests for 7 rotations, followed by final harvest and stump removal (a 25-year project).

Illustration of a Biomass Boiler

Range of willow yields from selected trials in Eastern Canada

Source	Location	Plot Cha	aracteristics	Productivity
		Age (yr)	Density (cuttings/ha)	ODT/ha/yr
Labrecque and		4	18,000	6.2-16.9
Teodorescu (2005;	Quebec	3	20,000	7.4-23.5
2003; 2001)		3	20,000	4.9-15.1
Labrecque et al. (1993)	Quebec	3	27,000	11.2-13.6
Girouard et al. (1999)	Quebec	5	10,000	7.5-8.9
Schroeder (2012)	PEI (Riparian trials)	3	6,666	4.5-23.4 (average = 16)
Pharo (2012)	PEI (In-field trials)	3	6,666	7.0-19.6 (average = 13)
Wright (2012)	PEI (High-sloped trials)	3-4	6,666	2.5-3.7ª (average = 3.1)

^a Yields for the PEI high-sloped trials were atypically low due to significant mortality in the initial planting season.

Typical yields would be expected to be in the range of 8+ ODT/ha/yr , especially if fertilizer was used.

Basic hybrid willow cropping system costs per ha

Activity	Unit Cost (2012 CDN \$/ha)	Year(s) Occurring
Plow (deep tillage)	\$60	1
Disks (level and loosen)	\$40	1
Cuttings	\$1,000	1
Plastic mulch planting	\$1,948	1
Broadcast grass seed	\$70	1
Mechanical weed control	\$70	1
Manual coppice	\$531	1
Opportunity cost of land use	\$185/\$100	annually
Harvesting	\$500	4, 7, 10, 13, 16, 19, 22
Stock removal	\$400	22

Scenario Assumptions for <u>off-farm</u> use

Inputs	Unit	Value ^a	Year(s) Occurring
Project Size	ha	3/6/9	1-23
Project lifetime	years	23	1-23
Willow Yield	ODT/ha	16/14/12/10/8	annually
Planting area	ha	3/6/9	1
Site prep., planting, and maintenance costs	\$/ha	\$3,719	1
Fertilizer cost	\$/ha	\$60	1 (when applicable)
Harvesting area	ha	3/6/9	4, 7, 10, 13, 16, 19, 22
Harvesting cost	\$/ha	\$500	4, 7, 10, 13, 16, 19, 22
Transportation	\$/ha	\$456/\$399/\$342/ \$285/\$228	5, 8, 11, 14, 17, 20, 23
Harvest revenue	\$/ha	\$2,400/\$2,100/ \$1,800/\$1,500/ \$1,200	5, 8, 11, 14, 17, 20, 23
Stock removal	\$/ha	\$400	22
Discount rate	%	6	annually

^a Multiple values separated with '/' indicate multiple scenarios.

Scenario Assumptions for <u>on-farm</u> use

Inputs	Unit	Value ^a	Year(s) Occurring
Project Size	ha	3/6/9	1-23
Project lifetime	years	23	1-23
Willow Yield	ODT/ha	16/14/12/10/8	annually
Planting area	ha	1/2/3	1, 2, 3
Site prep, planting, and maintenance costs	\$/ha	\$3,719	1, 2, 3
Fertilizer cost	\$/ha	\$60	1, 2, 3 (when applicable)
Harvesting area	ha	1/2/3	annually, in yr 4-24
Harvesting cost	\$/ha	\$500	annually, in yr 4-24
Biomass boiler financing cost	\$	\$1,785	annually, in yr 5-25
Cost savings (i.e., benefits) from displacing heating oil	S/na		annually, in yr 5-25
Stock removal	\$/ha	\$400	22, 23, 24
Discount rate	%	6	annually

^a Multiple values separated with '/' indicate multiple scenarios.

3. Results

Benefit-cost analysis of willow production for <u>off-farm</u> use ^a - Riparian land -

	Project Size				
	<u>3 hectares</u>	<u>6 hectares</u>	<u>9 hectares</u>		
		<u>No Fertilizer</u> (16 ODT/ha/yr)			
Benefits (\$)	50,400	100,800	151,200		
Costs (\$)	44,643	89,286	133,929		
Net benefit (\$)	5,757	11,514	17,271		
Net present value (\$) ^b	-3,806	-7,612	-11,419		
Benefit- cost ratio (\$/\$) ^b	0.87	0.87	0.87		
Internal rate of return (%)	2.90%	2.90%	2.90%		
Payback Period (years)	16	16	16		

^a Assuming chips sold to PEI Energy Systems Waste Plant (at \$50/ODT) over a 23-yr period.
^b 6% discount rate.

Benefit-cost analysis of willow production for <u>off-farm</u> use ^a - In-field Land -

	Project Size					
	<u>3 hec</u>	<u>ctares</u>	<u>6 hec</u>	<u>ctares</u>	<u>9 hee</u>	<u>ctares</u>
	<u>Fertilizer</u> (14 ODT/ha/y)	<u>No Fertilizer</u> (12 ODT/ha/y)	<u>Fertilizer</u> (14 ODT/ha/y)	<u>No Fertilizer</u> (12 ODT/ha/y)	<u>Fertilizer</u> (14 ODT/ha/y)	<u>No Fertilizer</u> (12 ODT/ha/y)
Benefits (\$)	44,100	37,800	88,200	75,600	132,300	113,400
Costs (\$)	43,626	42,249	87,252	84,498	130,878	126,747
NB (\$)	474	-4,449	948	-8,898	1,422	-13,347
NPV (\$) ^b	-6,528	-8,889	-13,055	-17,778	-19,583	-26,667
BCR (\$/\$) ^b	0.77	0.68	0.77	0.68	0.77	0.68
IRR (%)	0.26%	-2.85%	0.26%	-2.85%	0.26%	-2.85%
PP (years)	22	>23	22	>23	22	>23

^a Assuming chips sold to PEI Energy Systems Waste Plant (at \$50/ODT) over a 23-yr period.

^b 6% discount rate.

Benefit-cost analysis of willow production for <u>off-farm</u> use ^a - Steep-Sloped Land -

	Project Size					
	<u>3 hec</u>	<u>tares</u>	<u>6 hec</u>	<u>tares</u>	<u>9 hec</u>	<u>ctares</u>
	<u>Fertilizer</u> (10 ODT/ha/y)	<u>No Fertilizer</u> (8 ODT/ha/y)	<u>Fertilizer</u> (10 ODT/ha/γ)	<u>No Fertilizer</u> (8 ODT/ha/y)	<u>Fertilizer</u> (10 ODT/ha/y)	<u>No Fertilizer</u> <u>(8 ODT/ha/y)</u>
Benefits (\$)	\$31,500	\$25,200	\$63,000	\$50,400	\$94,500	\$75,600
Costs (\$)	\$35,622	\$34,245	\$71,244	\$68,490	\$106,866	\$102,735
NB (\$)	-\$4,122	-\$9,045	-\$8,244	-\$18,090	-\$12,366	-\$27,135
NPV (\$) ^b	-\$8,355	-\$10,717	-\$16,711	-\$21,433	-\$25,066	-\$32,150
BCR (\$/\$) ^b	0.65	0.54	0.65	0.54	0.65	0.54
IRR (%)	-2.85%	-8.13%	-2.85%	-8.13%	-2.85%	-8.13%
PP (years)	>23	>23	>23	>23	>23	>23

^a Assuming chips sold to PEI Energy Systems Waste Plant (at \$50/ODT) over a 23-yr period.
^b 6% discount rate.

Benefit-cost analysis of willow production for <u>on-farm</u> use ^a - Riparian land -

	Project Size 3 hectares 6 hectares 9 hectares No Fertilizer (16 ODT/ha/yr) 1000000000000000000000000000000000000				
Benefits (\$)	378,741	757,482	1,136,224		
Costs (\$)	64,784	92,081	119,378		
Net benefit (\$)	313,957	665,401	1,016,846		
Net present value (\$) ^b	141,942	301,516	461,090		
Benefit- cost ratio (\$/\$) ^b	4.92	6.51	7.29		
Internal rate of return (%)	52.58%	54.26%	54.81%		
Payback Period (years)	4	4	4		

^a Assuming chips, with energy content of 13.8 GJ/ODT, and biomass boiler replace fuel oil (at \$1.04/L) for heating typical farm buildings on PEI over a 25-year period.

^b Assuming a 6% discount rate.

Benefit-cost analysis of willow production for <u>on-farm</u> use ^a - In-field Land -

	Project Size					
	<u>3 hec</u>	<u>ctares</u>	<u>6 hec</u>	<u>ctares</u>	<u>9 he</u>	<u>ctares</u>
	<u>Fertilizer</u> (14 ODT/ha/y)	<u>No Fertilizer</u> (12 ODT/ha/y)	<u>Fertilizer</u> (14 ODT/ha/y)	<u>No Fertilizer</u> (12 ODT/ha/y)	<u>Fertilizer</u> (14 ODT/ha/y)	<u>No Fertilizer</u> (12 ODT/ha/y)
Benefits (\$)	331,399	284,056	662,797	568,112	994,196	852,168
Costs (\$)	64,964	64,784	92,441	92,081	119,918	119,378
NB (\$)	266,435	219,272	570,356	476,031	874,278	732,790
NPV (\$) ^b	119,504	97,407	256,641	212,446	393,777	327,484
BCR (\$/\$) ^b	4.29	3.69	5.66	4.88	6.33	5.47
IRR (%)	47.64%	43.03%	49.47%	45.09%	50.07%	45.75%
PP (years)	4	5	4	5	4	5

^a Assuming chips, with energy content of 13.8 GJ/ODT, and biomass boiler replace fuel oil (at \$1.04/L) for heating typical farm buildings on PEI over a 25-year period.

^b Assuming a 6% discount rate.

Benefit-cost analysis of willow production for <u>on-farm</u> use ^a - Steep-Sloped Land -

	Project Size					
	<u>3 hec</u>	<u>ctares</u>	<u>6 hec</u>	<u>tares</u>	<u>9 hec</u>	<u>ctares</u>
	<u>Fertilizer</u> (10 ODT/ha/y)	<u>No Fertilizer</u> (8 ΟDT/ha/γ)	<u>Fertilizer</u> (10 ODT/ha/y)	<u>No Fertilizer</u> <u>(8 ODT/ha/γ)</u>	<u>Fertilizer</u> (10 ODT/ha/y)	<u>No Fertilizer</u> (8 ODT/ha/y)
Benefits (\$)	236,713	189,371	473,427	378,741	710,140	568,112
Costs (\$)	62,924	62,744	88,361	88,001	113,798	113,258
NB (\$)	173,789	126,627	385,066	290,740	596,342	454,854
NPV (\$) ^b	76,100	54,002	169,832	125,637	263,564	197,271
BCR (\$/\$) ^b	3.16	2.54	4.21	3.39	4.74	3.82
IRR (%)	37.82%	31.57%	40.15%	34.32%	40.90%	35.20%
PP (years)	5	5	5	5	5	5

^a Assuming chips, with energy content of 13.8 GJ/ODT, and biomass boiler replace fuel oil (at \$1.04/L) for heating typical farm buildings on PEI over a 25-year period.

^b Assuming a 6% discount rate.

Break-even biomass price (\$/ODT) for off-farm use scenarios ^a

	Riparian land	In-fiel	d land	High-slo	ped land
Project size	<u>Fertilizer</u>	<u>Fertilizer</u>	<u>No Fertilizer</u>	<u>Fertilizer</u>	<u>No Fertilizer</u>
	<u>(16 ODT/ha/y)</u>	<u>(14 ODT/ha/y)</u>	<u>(12 ODT/ha/y)</u>	<u>(10 ODT/ha/y)</u>	<u>(8 ODT/ha/y)</u>
<u>3 hectares</u>	\$57.60	\$64.90	\$73.70	\$76.70	\$92.70
<u>6 hectares</u>	\$57.60	\$64.90	\$73.70	\$76.70	\$92.70
<u>9 hectares</u>	\$57.60	\$64.90	\$73.70	\$76.70	\$92.70

^a These prices reflect the <u>lowest</u> biomass price that could support the hybrid willow project investment on economic grounds (current price = \$50/ODT).

Break-even heating oil price (\$/litre) for <u>on-farm</u> use scenarios ^a

	Riparian land	In-fiel	d land	High-sloped land		
Project size	<u>Fertilizer</u>	<u>Fertilizer</u>	<u>No Fertilizer</u>	<u>Fertilizer</u>	<u>No Fertilizer</u>	
	<u>(16 ODT/ha/y)</u>	<u>(14 ODT/ha/y)</u>	<u>(12 ODT/ha/y)</u>	<u>(10 ODT/ha/y)</u>	<u>(8 ODT/ha/y)</u>	
3 hectares	\$0.21	\$0.24	\$0.28	\$0.33	\$0.41	
6 hectares	\$0.16	\$0.18	\$0.21	\$0.25	\$0.31	
9 hectares	\$0.14	\$0.17	\$0.19	\$0.22	\$0.27	

^a These prices reflect the <u>lowest</u> heating oil price that could support the hybrid willow project investment on economic grounds (current price = \$1.04/L).

4. Summary

- Off-farm use:
 - At a current price of \$50 per oven dried tonne (ODT) sold to PEI Energy Systems, willow is not an attractive investment opportunity for farmers.
 - Biomass prices would have to increase to the range of \$58-\$93/ODT before such an investment would be profitable.
- On-farm use:
 - At a current price of \$1.04/L for fuel oil to heat farm buildings, willow is a very attractive investment opportunity for farmers.
 - Heat replacement costs of \$39-\$124/ODT to implement the system and biomass boiler vs. cost savings of \$375/ODT from displacing heating oil

... net savings = \$336-\$251/ODT.

- Using this system would reduce heating costs on the farm in the range of 67%-90%.
- Fuel oil prices would have to decrease to the range of \$0.14-\$0.41/L before such an investment would be unprofitable.

5. Limitations

- There are a number of issues and assumptions that need to be further investigated in order to instill confidence in these estimates.
- **Yield uncertainty**: yields vary substantially by test site and clones. Studies have shown that field-scale yields are sometimes lower than test sites
- Fertilizer impact uncertainty: relatively little is known empirically about the impacts of fertilizer on willow yields, especially in the PEI region
- Unit cost uncertainty: little is known about local input costs for willow production. We've estimated average PEI farm cost estimates using the expert opinion and data from a recent willow study in Ontario.
 - These estimates could vary considerably by farm and, as such, future efforts should be made to verify the costs with farmers.
- Additional costs and benefits: these may include unaccounted-for costs (opportunity, administration, maintenance, etc.), potential ALUS payments, carbon credit payments, and other environmental service benefits (e.g., water quality; wildlife habitat; aesthetics; etc.).